Preprocessors#
Base preprocessors#
- class udao.data.preprocessors.base_preprocessor.StaticPreprocessor#
Bases:
ABC
,Generic
[T
]Base class for feature processors that do not require training.
- class udao.data.preprocessors.base_preprocessor.TrainedPreprocessor#
Bases:
ABC
,Generic
[T
]Base class for feature processors that require training.
Normalize preprocessor#
- class udao.data.preprocessors.normalize_preprocessor.FitTransformProtocol(*args, **kwargs)#
Bases:
Protocol
- class udao.data.preprocessors.normalize_preprocessor.NormalizePreprocessor(normalizer: FitTransformProtocol, data_key: str = 'data')#
Bases:
TrainedPreprocessor
[T
]Normalize the data using a normalizer that implements the fit and transform methods, e.g. MinMaxScaler.
- Parameters:
normalizer (FitTransformProtocol) – A normalizer that implements the fit and transform methods (e.g. sklearn.MinMaxScaler)
df_key (str) – The key of the dataframe in the container.
- inverse_transform(container: T) T #
Reverse the normalization process on the container’s data.
- Parameters:
container (T) – Child of BaseContainer with the normalized data.
- Returns:
Child of BaseContainer with the data in original scale.
- Return type:
T
- preprocess(container: T, split: Literal['train', 'val', 'test']) T #
Normalize the data in the container.
- Parameters:
container (T) – Child of BaseContainer
split (DatasetType) – Train or other (val, test).
- Returns:
Child of BaseContainer with the normalized data.
- Return type:
T